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Vertex intrinsic fitness: How to produce arbitrary scale-free networks
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We study a recent model of random networks based on the presence of an intrinsic character of the vertices
called fithess. The vertex fitnesses are drawn from a given probability distribution density. The edges between
pairs of vertices are drawn according to a linking probability function depending on the fitnesses of the two
vertices involved. We study here different choices for the probability distribution densities and the linking
functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straight-
forward. We then derive the general conditions under which scale-free behavior appears. This model could then
represent a possible explanation for the ubiquity and robustness of such structures.
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In the last few years, much attention has been focused oRather, the driving force is the “beauty” of people involved,
the study of complex networks. A network is a mathematicalof which the number of partners is an effective measure.
object consisting of a collection of verticdsodeg con- To take into account this new mechanism, the varying
nected by edgedinks) [1,2]. Networks arise in many areas fitness model has been introduced by Caldaetlil.[16]. In
of science: biology[3-9], social science§6-8|, Internet  this model, considering, e.g., only undirected graphs, one
[9-11, WWW [12], etc., where vertices and links can be, for extracts a real non-negative variabigthe hidden variable
example, proteins and their mutual interaction, individualsior each vertex of the graph from a probability distribution
and sexual relationshifi.3], and computers and cable con- gensityp(x). This variablex is thefitnessof the vertex. Links

nections. Very interestingly, the same nontrivial StatiSticalbetween vertices are successively formed with a probability

properties_ appear ubiquitously in all the above Situat.ions'.’a"unction f(x,y), a symmetric function of its arguments
more traditional view, indeed, is represented by the binomial A static 'sin,1plified form of the vertex hidden var.iable

model inspired to the random graph model of &xdRényi . ;
[14]. Here, each vertex has the same probability to connect t§10d€! has been considered for one particular case byeBoh
any other, resulting in a network with vertex degree, i.e., thé!- [17], while Bianconi et al. [18] introduced a fitness
number of edges connected to each vertex, distributed agl®chanism coupled to the preferential attachment. In the pa-
cording to a binomial probability distribution. This is not the Per of Caldarelliet al. [16], the onset of SF behavior is
case of the above real data, where instead, the structure iigstead directly related only to the fitness presence of any
self-similar, resulting in a scale-fra&F probability distri- ~ kKind. This SF behavior is checked for two different fitness
bution for the degree. More specifically, the degkeef the  probability distribution densities. In this manuscript, on the
vertices is distributed according to a power la&(k)<k®  contrary, we present an exhaustive study on the general con-
with usually -3<a<-2. ditions needed in order to produce a SF network with the
In order to explain the occurrence of SF networks, thevertex hidden variable model. Finally, we apply this study to
ingredients of growth preferential attachment have been inebtain the analytic expressions connecting the fitness distri-
troduced[15]. The network increases the number of verticesbution densityp(x) and probability functiorf(x,y) in three
with time; the newcomers tend to be connected with oldspecial cases.
vertices with a large degree. This means that in the network, The fithess model can be easily generalized in order to
one needs the knowledge of the degree value of all verticelsave more than one fitness variable per vefte]. In the
in order to decide with whom to link. This is certainly a following, we consider a single real variabkeper vertex,
rather strange assumption in a variety of different situationswith x=0. As a probability distribution density functiop,
In fact, in some cases, we have the same SF properties witkatisfies{p(x) = 0| [{p(z)dz= 1}, while the linking probability
out either growth of the system or a preferential attachmend= f(x,y)<1. We define the primitive function qgf(x), the
mechanism. As an example, the finite set of protein interacprobability distributionR(x)=[5p(z)dz Indicating the num-

tions in a cell forms a self-similar network. This is done per of vertices in the graph wit, one has the vertex degree
without growth of the system size and ignoring their recip-

rocal degree. Possibly, some external influence on intrinsic o
properties such as chemical affinity is instead driving the k(x):Nf
phenomenon. Another important example is the sexual inter-

action networl{13]. Here it is evident that the knowledge of

the number of previous partne( possible to achieve Other quantities of interest are the average nearest-neighbor
could result in the opposite effect of preferential attachmentconnectivity(vertex degree correlation

f(x,2)p(2)dz (1)
0
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P(k), K.i(k), C(k), from ensemble statistics, we need to per-
form two different average procedures. First, we should ex-
tract an{x;};=;n configuration with the distribution density

expressing the average degree of vertices that are neargdk) and keep it fixed, while creating ensemble elements us-

neighbors of vertices with fitness and the clustering coef-
ficient (vertex transitivity,

] o0

ff(X,Y)f(y,Z)f(Z,X)P(Y)P(Z)dde
O

k(x)? - O

ing the linking probabilityf(x,y) and averaging at the end.
Secondly, we should repeat the above procedure a sufficient
number of times. We assume that for large enodgand
ensemble elements, the procedure of first averaging with re-
spect to thef can be skipped.

Here we focus on two different problems: first, there is
what we call a direct problem, in which one assigns a distri-

that counts the fraction of nearest neighbors of vertices withhution density functionp(x) and tries to find the linking
fitnessx that are also nearest neighbors each other. Equationsiobability functionf(x,y); secondly, there is what we call

(1), (2), and(3) are valid asymptotically wheN approaches
infinity. Equations(2) and(3) were first derived in Ref.20],
and expressed in a different form.

If k(x) is an invertible and increasing function wf then
the probability distributiorP(k) is given by

P(k) = p(x(k))x' (k) (4)
or, as a function ok,
_px)
PKX) = 7 (5)

an inverse problem, in which one assigns the linking prob-
ability function and tries to determine the fitness probability
distribution densityp(x). The inverse problem is by far more
complex and interesting than the direct one. For instance, in
the case of a protein SF network by assuming a reasonable
linking function, we can retrieve the probability density dis-
tribution of fitness(e.g., some basic property of the macro-
molecules.

We start with the special case ofx,y)=g(x)h(y) where
both the direct and inverse problems can be analytically
solved. Because of the symmetryfxk,y) with respect to its

Since the degree probability is power-law distributed in mos@fguments, one hag(x)=h(x), so that f(x,y)=g(x)g(y)-

of the physical situations, we impose in E&) P(k)=ck®
with a« e R. The constant is fixed by the normalization
condition [i“P(K)dk=1,

atl s
Latl _ patlr a7 =4

c= ks kooko_l (6)
(Iogg> , fa=-1,

with ks=lim,_ k(x). Note that, according to Eql), ko=8N
andk,,=yN for some 0< 8< y=<1, so thattx NV, Equa-
tion (5) becomes

ck () (k(x))* = p(x). (7)

By integrating Eq.(7) from O to x, we get the following
nonlinear integral equation:

+1 1/(a+1)
(|<g+1+—0‘C R(x)) L ifa# -1,

k(x) = (8)

kOeR(x)/c

with k(x) given by Eq.(2).
By multiplying both sides of Eq8) by p(x) and integrat-

if a=-1,

Equation(1) becomes

k(x) =Ng(x) f 9(2)p(2)dz, 9
0

which substituted into Eq8) gives equations iig and p. If

one fixes a given functiop(x), the equations img(x) can be
easily solved. Take for instance the second equation corre-
sponding toa=-1. One gets

Ng(x)(g) = kg™, (g) = J 9(2)p(2)dz.
0
By multiplying the left- and right-hand side ky(x) and in-
tegrating from 0 toe, considering thap(x)dx=dR(x), we get

(@ = i@ TN,

Finally, after substituting the value aftaken from Eq.(6)
with «=-1, the solution reads

I =1
o0 = gy Y09 st (10
Y- B
The condition thatg(x) be a probability, i.e., g(x)

ing from 0 tow, we get an analytic expression for the aver-=lim,_,..g(x)<1, fixes the dependence betwegnand g.

age vertex degreg). This expression can be used to wite

With the choiceg()=1, one ensures the broadest rang& of

as a function ofk), so that the final expressions do dependsuch thatP(k) is a power law with the desired exponent. This

on the physical quantityk) only. For this purpose, the inte-

procedure is applicable for any value af Equation(10)

gral on the right-hand side is simply solved using the relatiorgenerates random networks with degree probability distribu-

p(x)dx=dR(x).

tion P(k) =< 1/k. In order to test the result, we take the choice

In the following, we show an application of the model in reported in the caption of Fig. 1. _ _
three special cases of interest, comparing the analytic results We conclude thafior any giverp(x) there exists a function

with numerical simulations. It has to be noticed that ohce
is fixed, in order to compute the

g(x) such that the network generated lyx) and f(x,y)

quantities =g(x)g(y) is scale-free with an arbitrary real exponent
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) o FIG. 2. (Color online Degree distribution in the caséx,y)
FIG. 1. (Color onling Vertex degree distribution gengrate_d by =f(x-y), a=-3,p(x=€% ky=10,k.=N=10% f(u)=[F(u)
f(x,¥)=g()g(y), @=-1, p()=e™, N=10%, ko=0.1 [resulting in 4 £/ ;}1/N with F(x) given by the right-hand side of E¢B), aver-
k.~ 1077 by requiringg(>)=1]. The functiong(x) is given by EQ. 5464 40 times. The value ofis calculated from Eq(6). The inset
(10). This figure is obtained averaging over 20 realizations. shows the vertex degree correlation and transitivity as functions of
the vertex degree.
In this case, both the average nearest-neighbor connectiv-
ity and clustering coefficient are const480]. Respectively, X
f p(x=2)f(2)dz=F(x)/N,

@ -

Kn=N(g?, C= @2 (11
9 which in the special casg(x)=e™ becomes
as it can be derived from E@2) and Eq.(3). This special X
case is in some sense close to the preferential attachment f ef(z2)dz= €*F(x)/N.
mechanism, in that vertices with a large fitness value are -

likely to be the most connected ones in the netwlork. To IargeBy differentiating with respect to the variable we finally
vertex degree values correspond large vertex fithess valuegbtain

so that the preferential attachment rule is recovered in a more
natural way without the necessity, from the newcoming F(x-y)+F'(x-vy)
nodes, of the knowledge of the whole set of vertex degrees. f(x,y) = N : (13
The inverse problem forf(x,y)=g(x)g(y) is solved by
substituting Eq(9) into Eqg. (7), In order to test the result, we take the function and parameter
choice of the Fig. 2 caption.
p(¥) = cg' () g(x)“(N(g))***. The casd (x,y) =f(x+y) is analogous. Again, we consider
the special casp(x)=€*, getting now

Let us remark that the assumptions kiw) force g(x) to be

nondecreasing witly() >g(0) >0. F(x+y)—F'(x+y)
The normalization conditioiR(ec)=1 results in f(xy) = N : (14
a+l 0%, if a® -1 In both previous cases of Eq4.3) and(14), the value ofy
g(eo)**t - g(o)a+1g XX, I ' can be chosen independently frggrsince lim,_..f(z)=v, as
p(X) (00) | L it can be simply derived from Ed7), by which one finds
(|ogg—> g’ ()g(x) L, if a=-1. that lim, ,.F’(2)=0. The best choice is of courge=1.
9(0) The solution of Eq(8) for a=-2 obtained via Eq(14)

(12 reads, recalling thaty=p8N, k,=yN, and using Eq(6),

The casef(x,y)=f(x-y) is more complicated. In this y
case, both the nearest-neighbor connectivity and clustering f(xy) = —1_ 1y (xHy) 12" (15
' h [1+(y8 = De ]
coefficient depend on the fithessand conversely on the
degreek. We managed to solve this case in the particularThrough Eq.(15) we clarify the assumption made in the
case of an exponentially distributed fithess. We indicate withoriginal paper by Caldarellet al. [16], where f(x,y)=0(x
F(x) the right-hand side of Eq8). Thus Eq.(8) becomes +y—-2) with z=z(N). Note that now with the latter choice of
. f(x,y) one getsP(k)=Ne %2 that forcesz to depend loga-
_ _ rithmically uponN in order to get the correct normalization.
fo f(x=wp(wdu=Fx)/N. The functional form of the(N) was already guessed numeri-
cally by Ref.[21]. To test the result, we take the parameters
By changing the integration variable infe=x—u, we get reported in the caption of Fig. 3. In these last two cases, both

056126-3



SERVEDIO, CALDARELLI, AND BUTTA PHYSICAL REVIEW E 70, 056126(2004)

o s (power-law behavior results in the formation of SF net-
works. Indeed, with this new model of fitness growth, also
Gaussian distributed sets of vertex fithesga®bably be-
cause of the central limit theorgmrmay give rise to SF be-
havior when the linking probability function assumes the
form stemming from the solution of E¢B). This is probably
the origin of the fact that SF networks seem to be more
general than fractal phenomena.

In conclusion, we present a general procedure to repro-
duce real SF networks with arbitrary vertex degree distribu-
tion densities. More specifically, we found that, given a fit-
T ness distribution density(x), it is always possible to find a

k symmetric linking probability functiorf(x,y) such that the
. o resulting random network is SF with a given real exponent.

FIG. 3. (Color onling Degree distribution in the caséx,y)  we give the recipe to find these linking functions, in three
=f(x+y) anda=-2, p(x)=e™, kp=0.5,k.=N=10", f(v) from Eq.  cases of interest. In order to allow the generation of networks
(15), averaged 20 times. The inset shows the vertex degree correlgyen closer to the real data, it would be desirable to have
tion and transitivity as functions of the vertex degree. control not only on the vertex degree distribution, but also on

the vertex transitivity and vertex degree correlation, by solv-
the nearest-neighbor connectivity and clustering coefficienrng simultaneously Eqg2), (3), and(5). As a first step, the
show a nontriviak dependence. compatibility of these three equations should be addressed,

We think that the fithess mechanism studied in this papepnce the functionsP(k), K,k), and C(k) are given. The
is respor_lsible for the widespread occurrence _of SF networkgg|ution of this problem is certainly very hard and is left
Indeed, in many cases, such as Pareto's[l2@ in econom-  gnen for the future. The relative ease with which we obtain
ics or Zipf's law[23] in linguistic, or fractal growtfj24], we  gE structures seems to be the key ingredient in order to ex-

find the presence of characteristic power-law distributionsmain the ubiquitous presence and robustness of the real data.
Once those systems are represented by means of graphs,

those power laws come back in the role of SF networks. In  We acknowledge R. Pastor-Satorras, P. De Los Rios, D.
this respect then, we think that the proposed mechanism regarlaschelli, F. Squartini, S. Millozzi, and S. Leonardi for
resents the connection between fractal growth theory and theseful discussions, and support from EU FET Open Project
study of SF networks. Moreover, a new class of phenomen#sT-2001-33555 COSINwww.cosin.org. V.D.P.S. and G.C.
where the various elements do not display any fractathank IMFM PAIS PA_G02_4 for support.
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