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We study a recent model of random networks based on the presence of an intrinsic character of the vertices
called fitness. The vertex fitnesses are drawn from a given probability distribution density. The edges between
pairs of vertices are drawn according to a linking probability function depending on the fitnesses of the two
vertices involved. We study here different choices for the probability distribution densities and the linking
functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straight-
forward. We then derive the general conditions under which scale-free behavior appears. This model could then
represent a possible explanation for the ubiquity and robustness of such structures.
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In the last few years, much attention has been focused on
the study of complex networks. A network is a mathematical
object consisting of a collection of vertices(nodes) con-
nected by edges(links) [1,2]. Networks arise in many areas
of science: biology[3–5], social sciences[6–8], Internet
[9–11], WWW [12], etc., where vertices and links can be, for
example, proteins and their mutual interaction, individuals
and sexual relationship[13], and computers and cable con-
nections. Very interestingly, the same nontrivial statistical
properties appear ubiquitously in all the above situations. A
more traditional view, indeed, is represented by the binomial
model inspired to the random graph model of Erdős-Rényi
[14]. Here, each vertex has the same probability to connect to
any other, resulting in a network with vertex degree, i.e., the
number of edges connected to each vertex, distributed ac-
cording to a binomial probability distribution. This is not the
case of the above real data, where instead, the structure is
self-similar, resulting in a scale-free(SF) probability distri-
bution for the degree. More specifically, the degreek of the
vertices is distributed according to a power lawPskd~ka

with usually −3,a,−2.
In order to explain the occurrence of SF networks, the

ingredients of growth preferential attachment have been in-
troduced[15]. The network increases the number of vertices
with time; the newcomers tend to be connected with old
vertices with a large degree. This means that in the network,
one needs the knowledge of the degree value of all vertices
in order to decide with whom to link. This is certainly a
rather strange assumption in a variety of different situations.
In fact, in some cases, we have the same SF properties with-
out either growth of the system or a preferential attachment
mechanism. As an example, the finite set of protein interac-
tions in a cell forms a self-similar network. This is done
without growth of the system size and ignoring their recip-
rocal degree. Possibly, some external influence on intrinsic
properties such as chemical affinity is instead driving the
phenomenon. Another important example is the sexual inter-
action network[13]. Here it is evident that the knowledge of
the number of previous partners(if possible to achieve)
could result in the opposite effect of preferential attachment.

Rather, the driving force is the “beauty” of people involved,
of which the number of partners is an effective measure.

To take into account this new mechanism, the varying
fitness model has been introduced by Caldarelliet al. [16]. In
this model, considering, e.g., only undirected graphs, one
extracts a real non-negative variablex (the hidden variable)
for each vertex of the graph from a probability distribution
densityrsxd. This variablex is thefitnessof the vertex. Links
between vertices are successively formed with a probability
function fsx,yd, a symmetric function of its arguments.

A static simplified form of the vertex hidden variable
model has been considered for one particular case by Gohet
al. [17], while Bianconi et al. [18] introduced a fitness
mechanism coupled to the preferential attachment. In the pa-
per of Caldarelliet al. [16], the onset of SF behavior is
instead directly related only to the fitness presence of any
kind. This SF behavior is checked for two different fitness
probability distribution densities. In this manuscript, on the
contrary, we present an exhaustive study on the general con-
ditions needed in order to produce a SF network with the
vertex hidden variable model. Finally, we apply this study to
obtain the analytic expressions connecting the fitness distri-
bution densityrsxd and probability functionfsx,yd in three
special cases.

The fitness model can be easily generalized in order to
have more than one fitness variable per vertex[19]. In the
following, we consider a single real variablex per vertex,
with xù0. As a probability distribution density function,r
satisfieshrsxdù0u e0

`rszddz=1j, while the linking probability
0ø fsx,ydø1. We define the primitive function ofrsxd, the
probability distributionRsxd=e0

xrszddz. Indicating the num-
ber of vertices in the graph withN, one has the vertex degree

ksxd = NE
0

`

fsx,zdrszddz. s1d

Other quantities of interest are the average nearest-neighbor
connectivity(vertex degree correlation),
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Knnsxd =
N

ksxdE0

`

fsx,zdkszdrszddz, s2d

expressing the average degree of vertices that are nearest
neighbors of vertices with fitnessx, and the clustering coef-
ficient (vertex transitivity),

Csxd = N2

E
0

` E
0

`

fsx,ydfsy,zdfsz,xdrsydrszddydz

ksxd2 , s3d

that counts the fraction of nearest neighbors of vertices with
fitnessx that are also nearest neighbors each other. Equations
(1), (2), and(3) are valid asymptotically whenN approaches
infinity. Equations(2) and(3) were first derived in Ref.[20],
and expressed in a different form.

If ksxd is an invertible and increasing function ofx, then
the probability distributionPskd is given by

Pskd = r„xskd…x8skd s4d

or, as a function ofx,

P„ksxd… =
rsxd
k8sxd

. s5d

Since the degree probability is power-law distributed in most
of the physical situations, we impose in Eq.(5) Pskd=cka

with aPR. The constantc is fixed by the normalization
conditionek0

k`Pskddk=1,

c =5
a + 1

k`
a+1 − k0

a+1 , if a Þ − 1,

Slog
k`

k0
D−1

, if a = − 1, 6 s6d

with ks=limx→sksxd. Note that, according to Eq.(1), k0=bN
andk`=gN for some 0,b,gø1, so thatc~N−sa+1d. Equa-
tion (5) becomes

ck8sxd„ksxd…a = rsxd. s7d

By integrating Eq.(7) from 0 to x, we get the following
nonlinear integral equation:

ksxd = 5Sk0
a+1 +

a + 1

c
RsxdD1/sa+1d

, if a Þ − 1,

k0e
Rsxd/c, if a = − 1,

6 s8d

with ksxd given by Eq.(1).
By multiplying both sides of Eq.(8) by rsxd and integrat-

ing from 0 to`, we get an analytic expression for the aver-
age vertex degreekkl. This expression can be used to writek0

as a function ofkkl, so that the final expressions do depend
on the physical quantitykkl only. For this purpose, the inte-
gral on the right-hand side is simply solved using the relation
rsxddx=dRsxd.

In the following, we show an application of the model in
three special cases of interest, comparing the analytic results
with numerical simulations. It has to be noticed that onceN
is fixed, in order to compute the quantities

Pskd , Knnskd , Cskd, from ensemble statistics, we need to per-
form two different average procedures. First, we should ex-
tract anhxiji=1,…,N configuration with the distribution density
rsxd and keep it fixed, while creating ensemble elements us-
ing the linking probabilityfsx,yd and averaging at the end.
Secondly, we should repeat the above procedure a sufficient
number of times. We assume that for large enoughN and
ensemble elements, the procedure of first averaging with re-
spect to thef can be skipped.

Here we focus on two different problems: first, there is
what we call a direct problem, in which one assigns a distri-
bution density functionrsxd and tries to find the linking
probability function fsx,yd; secondly, there is what we call
an inverse problem, in which one assigns the linking prob-
ability function and tries to determine the fitness probability
distribution densityrsxd. The inverse problem is by far more
complex and interesting than the direct one. For instance, in
the case of a protein SF network by assuming a reasonable
linking function, we can retrieve the probability density dis-
tribution of fitness(e.g., some basic property of the macro-
molecules).

We start with the special case offsx,yd=gsxdhsyd where
both the direct and inverse problems can be analytically
solved. Because of the symmetry offsx,yd with respect to its
arguments, one hasgsxd;hsxd, so that fsx,yd=gsxdgsyd.
Equation(1) becomes

ksxd = NgsxdE
0

`

gszdrszddz, s9d

which substituted into Eq.(8) gives equations ing andr. If
one fixes a given functionrsxd, the equations ingsxd can be
easily solved. Take for instance the second equation corre-
sponding toa=−1. One gets

Ngsxdkgl = k0e
Rsxd/c, kgl =E

0

`

gszdrszddz.

By multiplying the left- and right-hand side byrsxd and in-
tegrating from 0 tò , considering thatrsxddx=dRsxd, we get

kgl = Îk0cse1/c − 1d/N.

Finally, after substituting the value ofc taken from Eq.(6)
with a=−1, the solution reads

gsxd = bÎ log g − log b

g − b
eRsxdlogsg/bd. s10d

The condition that gsxd be a probability, i.e., gs`d
=limx→`gsxdø1, fixes the dependence betweeng and b.
With the choicegs`d=1, one ensures the broadest range ofk
such thatPskd is a power law with the desired exponent. This
procedure is applicable for any value ofa. Equation(10)
generates random networks with degree probability distribu-
tion Pskd~1/k. In order to test the result, we take the choice
reported in the caption of Fig. 1.

We conclude thatfor any givenrsxd there exists a function
gsxd such that the network generated byrsxd and fsx,yd
=gsxdgsyd is scale-free with an arbitrary real exponent.
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In this case, both the average nearest-neighbor connectiv-
ity and clustering coefficient are constant[20]. Respectively,

Knn = Nkg2l, C =
kg2l2

kgl2 , s11d

as it can be derived from Eq.(2) and Eq.(3). This special
case is in some sense close to the preferential attachment
mechanism, in that vertices with a large fitness value are
likely to be the most connected ones in the network. To large
vertex degree values correspond large vertex fitness values,
so that the preferential attachment rule is recovered in a more
natural way without the necessity, from the newcoming
nodes, of the knowledge of the whole set of vertex degrees.

The inverse problem forfsx,yd=gsxdgsyd is solved by
substituting Eq.(9) into Eq. (7),

rsxd = cg8sxdgsxdasNkglda+1.

Let us remark that the assumptions onksxd force gsxd to be
nondecreasing withgs`d.gs0d.0.

The normalization conditionRs`d=1 results in

rsxd =5
a + 1

gs`da+1 − gs0da+1g8sxdgsxda, if a Þ − 1,

Slog
gs`d
gs0d D

−1

g8sxdgsxd−1, if a = − 1. 6
s12d

The casefsx,yd= fsx−yd is more complicated. In this
case, both the nearest-neighbor connectivity and clustering
coefficient depend on the fitnessx and conversely on the
degreek. We managed to solve this case in the particular
case of an exponentially distributed fitness. We indicate with
Fsxd the right-hand side of Eq.(8). Thus Eq.(8) becomes

E
0

`

fsx − udrsuddu= Fsxd/N.

By changing the integration variable intoz=x−u, we get

E
−`

x

rsx − zdfszddz= Fsxd/N,

which in the special casersxd=e−x becomes

E
−`

x

ezfszddz= exFsxd/N.

By differentiating with respect to the variablex, we finally
obtain

fsx,yd =
Fsx − yd + F8sx − yd

N
. s13d

In order to test the result, we take the function and parameter
choice of the Fig. 2 caption.

The casefsx,yd= fsx+yd is analogous. Again, we consider
the special casersxd=e−x, getting now

fsx,yd =
Fsx + yd − F8sx + yd

N
. s14d

In both previous cases of Eqs.(13) and (14), the value ofg
can be chosen independently fromb since limz→`fszd=g, as
it can be simply derived from Eq.(7), by which one finds
that limz→`F8szd=0. The best choice is of courseg=1.

The solution of Eq.(8) for a=−2 obtained via Eq.(14)
reads, recalling thatk0=bN, k`=gN, and using Eq.(6),

fsx,yd =
g

f1 + sgb−1 − 1de−sx+ydg2 . s15d

Through Eq.(15) we clarify the assumption made in the
original paper by Caldarelliet al. [16], where fsx,yd=Qsx
+y−zd with z=zsNd. Note that now with the latter choice of
fsx,yd one getsPskd=Ne−zk−2 that forcesz to depend loga-
rithmically uponN in order to get the correct normalization.
The functional form of thezsNd was already guessed numeri-
cally by Ref.[21]. To test the result, we take the parameters
reported in the caption of Fig. 3. In these last two cases, both

FIG. 1. (Color online) Vertex degree distribution generated by
fsx,yd=gsxdgsyd , a=−1, rsxd=e−x, N=104, k0=0.1 [resulting in
k`<1077 by requiringgs`d=1]. The functiongsxd is given by Eq.
(10). This figure is obtained averaging over 20 realizations.

FIG. 2. (Color online) Degree distribution in the casefsx,yd
= fsx−yd, a=−3, rsxd=e−x, k0=10, k`=N=104, fsud=fFsud
+F8sudg /N with Fsxd given by the right-hand side of Eq.(8), aver-
aged 40 times. The value ofc is calculated from Eq.(6). The inset
shows the vertex degree correlation and transitivity as functions of
the vertex degree.
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the nearest-neighbor connectivity and clustering coefficient
show a nontrivialk dependence.

We think that the fitness mechanism studied in this paper
is responsible for the widespread occurrence of SF networks.
Indeed, in many cases, such as Pareto’s law[22] in econom-
ics or Zipf’s law [23] in linguistic, or fractal growth[24], we
find the presence of characteristic power-law distributions.
Once those systems are represented by means of graphs,
those power laws come back in the role of SF networks. In
this respect then, we think that the proposed mechanism rep-
resents the connection between fractal growth theory and the
study of SF networks. Moreover, a new class of phenomena
where the various elements do not display any fractal

(power-law) behavior results in the formation of SF net-
works. Indeed, with this new model of fitness growth, also
Gaussian distributed sets of vertex fitnesses(probably be-
cause of the central limit theorem) may give rise to SF be-
havior when the linking probability function assumes the
form stemming from the solution of Eq.(8). This is probably
the origin of the fact that SF networks seem to be more
general than fractal phenomena.

In conclusion, we present a general procedure to repro-
duce real SF networks with arbitrary vertex degree distribu-
tion densities. More specifically, we found that, given a fit-
ness distribution densityrsxd, it is always possible to find a
symmetric linking probability functionfsx,yd such that the
resulting random network is SF with a given real exponent.
We give the recipe to find these linking functions, in three
cases of interest. In order to allow the generation of networks
even closer to the real data, it would be desirable to have
control not only on the vertex degree distribution, but also on
the vertex transitivity and vertex degree correlation, by solv-
ing simultaneously Eqs.(2), (3), and(5). As a first step, the
compatibility of these three equations should be addressed,
once the functionsPskd , Knnskd, and Cskd are given. The
solution of this problem is certainly very hard and is left
open for the future. The relative ease with which we obtain
SF structures seems to be the key ingredient in order to ex-
plain the ubiquitous presence and robustness of the real data.
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FIG. 3. (Color online) Degree distribution in the casefsx,yd
= fsx+yd anda=−2, rsxd=e−x, k0=0.5, k`=N=104, fsvd from Eq.
(15), averaged 20 times. The inset shows the vertex degree correla-
tion and transitivity as functions of the vertex degree.
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